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Abstract— The number of possible precinct to district as-
signments for North Carolina’s US House of Representatives
Congressional Map is intractable. However, understanding the
composition of this space has become essential in efforts to
quantify the severity of partisan gerrymandering among imple-
mented maps. Towards this goal we implement (1) a parallel
tempering sampling procedure and (2) umbrella sampling
procedure to sample the state the space of all North Carolina
redistricting maps. We compare these methods to previously
explored sampling procedures in this domain, provide specific
implementation details, and preliminary results.

I. INTRODUCTION

Much recent work [1][2][3] seeking to rigorously quantify
partisan gerrymandering has focused on building ensembles
of redistricting plans. Ensembles are formed by (1) sampling
the space of all possible maps, (2) simulating the ensemble’s
distribution of electoral outcomes, and (3) then comparing
these electoral outcomes with those of implemented redis-
tricting plans. If an implemented plan’s electoral outcome
falls far outside the distribution outcomes generated by the
ensemble of maps than it is considered gerrymandered. By
building an ensemble, the natural geo-political landscape
of the state is captured [2] and many of the other pitfalls
suffered by popular methods like the efficiency gap [7] or
proportionality are avoided. As a result, the ensemble method
has found success as evidence in litigation challenging par-
tisan gerrymandering including in the Rucho v. Common
Cause (2018) decision.

One of the major challenges of the ensemble method lies
in the first step: sampling the space of all possible maps. As
the number of possible precinct to district assignments for
North Carolina’s US House of Representatives Congressional
Map is intractably large, ensuring that the space is sampled
accurately is a key challenge. The accuracy of the sampling
method affects the distribution of electoral outcomes, the
judgment of the magnitude of the partisan gerrymander, and
subsequently the legal viability of the ensemble methodol-
ogy.

The success of a sampling method thus depends on how
well it can traverse the space across variable energy ranges
to find a representative sample of compliant maps.

II. REVIEW OF SAMPLING PROCEDURES

A. Sampling the State Space of Maps

The sampling of NC congressional redistricting plans can
be accomplished by modeling NC as a graph with precincts
for nodes and where edges between nodes exist for precincts

which share a border. From this graph, each partition into 13
sets of precinct nodes can be considered a redistricting plan.
To make this more precise, allow V = {set of all precincts of
NC}, D = {1, 2, . . . , 13} represent each of the 13 districts of
NC. Let a redistricting plan be a function ξ : V → D which
maps precincts onto district numbers. Given this notation,
the ith district of a redistricting plan ξ may be represented
as Di(ξ) = {v ∈ V | ξ(v) = i}.

In order to sample redistricting plans which satisfy specific
criteria of population deviations between districts, compact-
ness of district boundaries, and minimization of county
splitting, a score function, S, is derived in order compare
the probability of observing any two particular redistricting
plans. For a redistricting plan ξ, the score of this plan is
designed to be proportional to S(ξ) ∝ e−J(ξ)β , for a scaling
constant β, where, if Φ is the space of all redistricting plans,
J : Φ → R+ is a function which maps a redistricting plan
onto a positive ”energy” value, where J is defined as

J(ξ) = wpopJpop(ξ) + wisoJiso(ξ) + wcountyJcounty(ξ)

For penalty, scalar parameters wpop, wiso, & wcounty (also
known as weights) which allow for the tuning of the score
function S, and Jpop, Jiso, & Jcounty are separately defined
functions which calculate a population deviation energy, a
compactness energy, and a county splitting energy, respec-
tively, for a given ξ. Each of these sub-functions are defined
below. In order to define Jpop, let pop[Di(ξ)] represent the
population of Di(ξ) given the plan ξ. Using this notation,

Jpop(ξ) =

13∑
i=1

(
pop[Di(ξ)]

pop[NC]/13
− 1

)2

where the summation from 1 to 13 comes from the fact
that there are 13 districts in North Carolina and pop[NC]

13
represents the ideal population of each of the 13 districts.
This component of J penalizes districting plans which have
large differences in populations between different districts.

Next, for any Di(ξ), let pDi(ξ) be defined as the length of
the boundary Di(ξ) share with other district boundaries (i.e.
the geographical boundary of Di(ξ) excluding the boundary
that Di(ξ) shares with other states, such as TN, SC, & VA).
Similarly, letting area[Di(ξ)] be defined as the geographical
area of Di(ξ),

Jiso(ξ) =

[
13∑
i=1

[pDi(ξ)]
2

area[Di(ξ)]

]



calculates the energy attributed to a districting plan given the
geographical compactness of its districts.

In order to properly consider county splitting, let C
represent the set of all counties of North Carolina. We define
the function A : (ξ, C) → Z to be the function from c ∈ C
to the number of times c is split given plan ξ.

Jcounty(ξ) =
∑
c∈C

A(ξ,c)∑
a=1

∣∣∣φi(ξ, c)a∣∣∣+ T (a)

where the function φi : (ξ, C)→ R smooths the transition
in energy from no county splits to heavy county splits and
which is defined as

φi(ξ, c) =
pop[ρc,i(ξ)]

pop[c]

where ρc,i(ξ) represents the partition of c with the ith

least population given ξ, and where T : N → R is a
function which is zero for all values less than three, and
which is otherwise large enough to prevent the occurrence
of a redistricting plan with more than two splits in any given
county. This definition of Jcounty penalizes multiple splits of
a single county more than single splits of multiple counties
and smooths the transition from no county splits to county
splits, preventing large fluctuations of energy when they are
not desired.

Using this score function, changes to an initial redistricting
plan ξ0 can be obtained by using the Markov Chain Monte
Carlo (MCMC) algorithm described in Fifield et. al [1]
given a scaling parameter β0. Although the method at which
changes are proposed and accepted to a redistricting plan
remain universal, there exists a variety of sampling schemes
which can be used to generate redistricting plans given an
initial starting point, a few of which are discussed in detail
below.

B. Constant Temperature Sampling

here Constant temperatue sampling is a base Metropolis-
Hastings sampler. The constant temperature sampling scheme
samples while keeping the value of β0 constant. This sam-
pling scheme can be appealing for computational purposes;
however, there are several disadvantages to this method. For
example, if the state space one is sampling is highly multi-
modal, then the sampler may have a difficult time exploring
areas of the state space that are separated by large energy
barriers.

C. Simulated Annealing

This sampling scheme is similar to that of constant temper-
ature sample, however, unlike constant temperature sampling,
the value of β changes gradually over time (typically from
(βstart = 0) → (βend = 1)), which begins the sampling
scheme under very ”hot” conditions (i.e. a very low value of
β) and slowly ”cools down” the map. To explain this further,
recall that S(ξ) ∝ e−J(ξ)β , and thus, for very low values of
beta, changes in J(ξ) have little effect on the overall score
of ξ, thus allowing changes to ξ to occur more easily given

the Metropolis-Hastings algorithm. Starting the redistricting
simulation at such a temperature allows the initial districting
plan is move far away from its starting point (i.e. the
initial plan) and explore the state space in far away areas –
perhaps even crossing several energy barriers that a sampler
running at constant temperature would have a difficult time
surmounting. Furthermore, as the temperature cools down,
the value of J(ξ) begins to wield more influence in the
decisions of which steps are being accepted and rejected
during redistricting; this forces the plan of ξ to ”move”
towards a plan more compliant to the criteria we have
specified given our energy function J , until the plan nears
a local minimum in terms of its score. These plans at local
minimums are the plans which intuitively are compliant.

Although simulated annealing is a reliable sampling
method for sampling, it has a few disadvantages. One such
disadvantage is that it is inefficient. For example, once a local
minimum has been discovered at the end of a sampling run,
the plan may still be rejected due to a lack of compliance,
at which point, and entire iteration of simulated annealing
will have been carried out essentially for nothing. This is
troubling given the possibility that slight modifications of
the ξend redistricting plan may lead to the discovery of a
new compliant plan, or, the redistricting plan fell into a sub-
optimal local minimum when a lower energy valley may have
been near by. Under these conditions the sampling scheme
will reset it’s βstart value to zero and begin exploring the
state space once again, leaving this potentially promising area
of the state space. Under this belief, it may be useful to
have a sampling scheme which allows for the surmounting
of energy barriers as well as jump from one local minimum
to another. One such sampling scheme that allows this
is parallel tempering, which is discussed in the following
section.

III. PARALLEL TEMPERING

A. Overview of Procedure

As alluded to above, parallel tempering is a separate sam-
pling scheme which allows for the exploration of multiple
local minimums in the state space while allowing jumps over
large energy barriers in a reasonable amount of time. The
sampling scheme begins by modifying the initial districting
plan ξ0 using the constant temperature sampling scheme at a
predetermined n ∈ N number of processors, each of which
holds unique β values which range from 0 to 1.

What makes parallel tempering different from n processes
of constant temperature sampling is the ”swapping” of these
β values across processors every period of m or so steps
of the sampler (for example, after every 100 steps of the
sampler, ask two processors to exchange the β values with
which they are currently constant temperature sampling.
Moreover, samples are only sampled from the processor
currently holding βn = 1 since this is the coldest processor
at the time. The general sampling scheme is as follows:

1) Choose an increasing sequence of n β values which
range from β0 = 0 (or close to zero), to βn = 1.



2) On separate processors, begin the exploration of redis-
tricting plans using constant temperature sampling at
each β value, however only try to sample plans from
the processor holding βn = 1

3) Using a predetermined period of m, propose a swap-
ping of β values using the following algorithm:

Algorithm 1 Swapping of Beta Values
βi ∼ discrete uniform{β1, β2, . . . , βn}

sample u ∼ uniform(0, 1)

set r =

(
S(ξi−1,βi)
S(ξi,βi)

S(ξi,βi−1)
S(ξi−1,βi−1)

)
if u ≤ min{1, r} then

βi−1 
 βi swap the locations of βi & βi−1

end if

Under this system, if 4 different β vales are being used
to parallel temper (i.e. there is a world size of 4), then β
values should be proposed to swap with each other such that
if the first swap is proposed at time (s), using the notation
of Pi(βj)(s) representing the state of processor i hosting
βj at time s, if β3 is proposed to swap with β2 and the
swap is accepted, the following change in the configuration
of processors and beta values from time s to time s+ 1 will
occur:

P0(β0)(s) P1(β1)(s) P2(β2)(s) P3(β3)(s)

P0(β0)(s+1) P1(β1)(s+1) P2(β3)(s+1) P3(β2)(s+1)

This swapping of beta values can continue over multiple
periods (i.e. a swap is proposed ever s steps of the sampler)
which results in a history of β value swaps which can be
visualized as the following:

P0(β0)(s) P1(β1)(s) P2(β2)(s) P3(β3)(s)

P0(β0)(s+1) P1(β1)(s+1) P2(β3)(s+1) P3(β2)(s+1)

...
...

...
...

P0(β0)(2s) P1(β1)(2s) P2(β3)(2s) P3(β2)(2s)

P0(β0)(2s+1) P1(β2)(2s+1) P2(β3)(2s+1) P3(β1)(2s+1)

...
...

...
...

P0(β0)(3s) P1(β3)(3s) P2(β1)(3s) P3(β2)(3s)

P0(β0)(3s) P1(β3)(3s) P2(β1)(3s) P3(β2)(3s)

Where β3 is first proposed to swap with β2 and the swap is
accepted, then β2 is proposed to swap with β1 and the swap
is accepted, and then finally, β1 is proposed to swap with β0
and the swap is rejected. Using this method, β values will
theoretically move from processor to processor such that a
redistricting plan which was initially being modified using

constant temperature sampling with a β value of β0 = 0 will
recurrently be sampled at βn = 1 (similar to the method used
in simulated annealing).

Perhaps clear to the reader by now, there are many
decisions which must be made in order to perform parallel
tempering, such as

1) How many distinct β values should be used (i.e. what
is the world size) ?

2) How often should the swapping of β values be pro-
posed?

3) How should β values be spaced from one another?
Answers to these questions come more from art than

science, as there are no known procedures which will lead
to lead to optimal results prior to trial and error [1].

B. Beta Value Distribution

As proposed in the section above, the distribution of beta
values must be taken into consideration prior to parallel
tempering, of few such distributions are described here.

a) Constant Spacing: One perhaps trivial choice for
the spacing of β values is to have βi = βi+1 − 1

n−1 for
i < n where n is the world size begin used. This spacing is
simple to implement and results in values of beta having a
relationship to 1

n−1 via βi = i
n−1 for β0, . . . , βn−1. Constant

spacing for beta values is shown as the black line in the
Figure 1 below.

b) Log Transformed Spacing (concave): In certain sit-
uation, it may be appealing to have beta values such that
eβ0 , . . . , eβn−1 is constantly spaced. In other situations, it
may be wise to have beta values which “bunch up” near
values near 1 and “spread out” near values around zero. (i.e.
the distribution of beta values is concave). Both of these
conditions can be satisfied by taking β values which were
originally constantly spaced and applying a log transforma-
tion to the beta values. This distribution is plotted in the red
line within Figure 1.

c) Exponentially Transformed Spacing (convex): Just as
having beta values which are concave may be beneficial in
certain situation, having beta values which are convex may
be beneficial in others. These situations may arise when beta
values between (0, .2) are having a difficult time swapping
with each other (i.e. the vast majority of proposed swaps is
rejected). In this situation, an exponential transformation of
the constantly spaced beta values as well. In addition to this
transformation, the slope of the exponentially transformed
beta distributions can be tuned by choosing a parameter m ∈
N such that

βi =
eim/(n−1)

em

Two distributions of this nature using values of m = 3 and
m = 5 can be seen in Figure 1 as the blue and gray lines,
respectively.

C. Multi-parameter Parallel Tempering

Parallel tempering on β values can be generalized to par-
allel tempering over a set of hyperparameters. For example,
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Fig. 1. Various Beta Value Spacings

since S(ξ) ∝ e−βJ(ξ), the score of a districting plan can
be “cooled down” by either increasing β or changing the
way J(ξ) is calculated. For example, one may trade on the
weights wpop, wiso, or wcounty as well as the values of β. If
this is desired, then the simple correction of

r =

(
S(ξi−1, wcounty,i−1, βi)

S(ξi, wcounty,i, βi)

S(ξi, wcounty,i, βi−1)

S(ξi−1, wcounty,i−1, βi−1)

)
for the calculation of r is all that is needed for the calculation
of the acceptance or rejection of swaps. In this situation,
increasing the any of these weights would be equivalent
to increasing the value of β which a given processor is
using. As a more concrete example, consider a parallel
tempering scheme where tuple values of

(
βi, wcounty,i

)
are

being swapped across processors. In this situation, there is
now a choice of how to space β values from one another as
well as wcounty values.

One such spacing would be constant spacing across beta
values as well as county splitting weights, where each swap
of tuples leads to an increase or decrease in the beta value
a sampler is running as as well as a corresponding increase
or decrease in the county weight. This may be problematic,
as two values are changing at once, which may cause large
changes in the scores of any two particular distracting plans.

Alternatively, one may hold the value of county weights
constant for some predetermined number of processors and
then gradually increase county weight values along with beta
values, allowing a perhaps smoother transition; this type of
spacing would represent that of a “hockey stick” when β is
plotted as a function of wcounty .

Lastly, one may wish to only change either a β value or
a wcounty values during any given swapping of tuples. This
may be accomplished following a ladder type approach of
beta value spacings and county weights, as shown in Figure
2 below.

D. Visualizing Parallel Tempering

As discussed previously, ”good” parallel tempering should
occur when beta values are swapping with each other at a
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Fig. 2. Parallel Tempering of Beta Values and County Split Weights

rate which allows beta values which started at a specific
processor to have a uniform stationary distribution across
all processors over time. In order to evaluate such ”mixing”
of beta values, one may implement parallel tempering and
track the location of beta values as a function of the number
of proposed swaps up to that point. As a results, plots such as
those shown in Figure 3, which was obtained from sampling
on the Union Anson county cluster using a world size of
8 and constant beta spacing with proposed swaps ever 500
steps of the sampler.

Fig. 3. Parallel Tempering on the Union Anson County Cluster

In the above graph, the color of each line references a
separate β value and each integer along the y-axis refers
to the processor at which the corresponding beta value is
located. As shown, the colors of the beta values quickly
mix with each other and change location. These plots are
commonly referred to as “mixing plots” given their use.

E. Discussion of Parallel Tempering on North Carolina

The parallel tempering sampling scheme has been im-
plemented to sample redistricting plans for North Carolina
Congressional Districts. Much of the work from the authors
of this report has entailed the exploration of different beta
spacing as well as the effects of county weight. As a result of
such experiments, there is preliminary evidence that a convex



spacing of beta values may be preferable when sampling
across the entire state of North Carolina. This hypothesis
arose after running several sampling runs using constant
beta spacing which resulted in mixing plots which revealed
heavy swapping around colder temperature betas and from
visualizations provided from trace plots of the energy of
redistricting plans where separate beta value are located
which showed redundant overlap in the energy distributions
for lower temperature beta values.

In addition to these efforts, much of the work performed
by the authors of this paper has pertained to the exploration
of data visualizations which allow for the assessment of
parallel tempering such as the calculation of frequencies for
individual beta swaps (i.e. the swap frequency of β2 and β3)
as well as the calculation of specific energy caused by the
various different sub-functions of J(ξ) (i.e. what the change
in population deviation energy was as a result of a particular
beta swap), however the results of these efforts have been
inconclusive.

F. Future Goals of Parallel Tempering

Although the computational aspects of parallel tempering
on a multiparameter space (i.e. parallel tempering of county
weights as well as beta values) has been implemented,
extensive testing of such parallel tempering has yet to be
performed as well as the development of methods to analyze
the results of such methods. Much of the previous work of
the authors of this paper has been towards the understanding
of the parallel tempering scheme in general and the imple-
mentation of this method. It is the goals of these authors
to further develop methods of evaluating parallel tempering,
with one unexplored areas being the analysis of redistricting
plans produced by parallel tempering by developing reliable
metrics to measure the distance between redistricting plans.

This being said, having already built of an analytically
took kit for the analysis of parallel tempering runs, future
efforts will focus on using these methods to analyze future
parallel tempering runs in order to develop a better under-
standing of how parallel tempering may be used explore Φ,
the space of possible redistricting plans of North Carolina.

IV. STRATIFIED SAMPLING

A. Overview of Procedure

The Umbrella Sampling method is a variant of the strat-
ified sampling approach originally proposed by Torrie Val-
leau (1977) and has found widespread use and success in
computational chemistry problems where long posterior tails
play an essential role (Boczko Brooks 1995; Berneche
Roux 2001). Similar to the map sampling problem we are
interested in, this class of application suffers from high
dimensionality of sample space, multi-modal π(x) and a
particular interest in low-probability nodes. As a result both
domains experience high computational cost of the π(x)
evaluation and slow convergence of the MCMC estimate.

The Umbrella Sampling procedure seeks to address these
challenges by dividing up or stratifying the sample space
into many smaller MCMC sampling problems. Overlapping

window functions, or umbrellas ψi(x), are defined which
confine the MCMC walks to their corresponding distribu-
tions, πi(x) ∝ ψi(x)π(x). If a selected window contains a
high energy region sampling is necessarily confined to it,
which enables much more efficient coverage of low prob-
ability areas and ensure the discovery of widely separated
peaks in multi-modal landscapes. As such, similar to parallel
tempering, it is designed to sample complex space more
uniformly.

After sampling these diverse regions of state space inde-
pendently, they must be combine to approximate the whole
of the region sampled (Dinner et al. 2017). To do so, we use
an implementation of the Eigenvalue Method for Umbrella
Sampling (EMUS) described by [4] and originally proposed
by [5] [6]. EMUS is an iterative method for computing
the relative weights of each sample umbrella πi(x) and
combining them to compute the global π(x), where

πi(x) :=
1

zi
ψi(x)π(x)

with ψi(x) being the umbrellas or strata for each individual
distribution, and zi is the normalizing constant that is needed
to ensure that the

∑
πi(x) = 1

Algorithm 2 Umbrella Sampling
Target Distribution π(x)

Define πi(x) by centroid ci, radius r, and metric space
(π(x), ρ)

for each πi(x) ∈ π(x) do:
Sample ξ ∈ πi(x)
if ρ(ci, ξ) > r then

Store ξ in πi(x).exitPoints
else

Store ξ in π̂i(x)
end if

end for

Let F be a i× i matrix

for ξi ∈ πi(x).exitPoints ∀πi ∈ π(x) do:
for each πj(x) ∈ π(x) do

if ρ(ξi, cj) < r then
F [i][j]+ = 1

end if
end for

end for

Let z = Eigenvector of F
Each zi is normalization constant for πi(x)

π̂(x) =
∑

zi · π̂i(x)

return π̂(x)



B. Implementation

Umbrella Sampling does not make any specifications
regarding how distance between points in space should
be defined, how the window function ψi should confine
each umbrella πi, or how to select each new umbrella’s
centroid Ci. Here we outline the domain specific Metric
Space (π(x), ρ), window function ψi(Ci, ξ), and the selec-
tion procedure for Ci.

We define a simple the euclidean distance for ρ in R13

(each dimension representing a district’s latitude and longi-
tude) and compute ρ between a windows centroid map Ci
and some proposed map’s ξ embedding in R13 to define our
window function ψi.

ρ(Ci, ξ) :=

13∑
j=0

(ξxj − Cxj)2 + (ξyj − Cyj)2

ψi(Ci, ξ) :=

{
accept ρ(Ci, ξ) < r

reject ρ(Ci, ξ) ≥ r

Each dimension in a plan’s centroid embedding in R13. is
computed by getting the geographic latitude xj and longitude
yj of each district’s composite precincts.

This function ψi(ξ) rejects proposed redistricting plans if
their euclidean distance ρ from the umbrellas centroid fall
beyond some arbitrary radius r. In setting this radius the
goal should be to capture a sufficient number of redistricting
plans, such that other compliant maps are captured but also
not so large that the MCMC does not frequently attempt to
step beyond the radius.

In this implementation an umbrella’s centroid Ci is defined
by a redistricting plan that was previously attempted, but did
not satisfy ψi−1. This redistricting plan, however, satisfies all
other step acceptance criteria (e.g. contiguity). The most re-
cently rejected redistricting plan after the previous umbrella
terminates therefore becomes the centroid Ci for the next
sampling umbrella and a new sampling procedure confined
by ψi begins. When instantiating the first umbrella, we begin
with a compliant seed centroid which takes the form of either
the North Carolina Judge’s Map, the implemented North
Carolina 2012 Map, or the implemented North Carolina 2016
Map.

C. Distance and Radius Selection

In Figure 3, we show an exploration of distance space
surrounding several seed centroid selections. First and fore-
most this data suggests that the state space is non-uniform
with regard to ρ and varies based on what region of state
space is being explored. This underscores the influence of
radius selection on how effectively an umbrella can sample.
It suggests that radius selection should likely be dynamically
computed instead of fixed for all umbrellas to account for
variations in state space. If the State Space surrounding a
centroid is extremely sparse with redistircting plans in R13,
the radius should be adjusted to capture more maps. If the
State Space surrounding a centroid is instead dense with
redistircting plans in R13, the radius should be contracted

Fig. 4. (A) Cumulative Density Functions (cdfs) that display the percentage
of proposed maps that fall within radius r during the first 800,000 steps.
(B) Each histogram displays the distribution of these steps as they step
away from the seed centroid. Each color represents a unique seed centroid,
(red) Uses the implemented North Carolina 2012 map as the seed centroid
from which 800,000 consecutive steps are proposed. (green) Uses the
implemented North Carolina 2016 map and (blue) uses the bipartisan Judges
map. All steps, both those rejected and accepted are included in the CDFs
and histograms.

to allow for more thorough exploration. The nature of the
histograms in Figure 3B also suggest that the minimum step
distance for ρ exists on the order of 10,000 and highlights
a tendency to take many steps very close to low-energy
compliant maps (the centroids in all displayed simulations
are compliant). The bi-modal nature of each suggests that a
second low-energy state was found just beyond the compliant
centroid in each simulation. Further, if the simulation was
allowed to continue to run, additional peaks more distant
from the centroid would likely appear in the histograms.
These additional peaks would theoretically represent addi-
tional low-energy states. The question therefore becomes
how many of these low-energy states would we like to
capture within a specified umbrella radius. This consideration
must then be balanced with a desirable non-zero percentage
of compliant redistrictings being rejected by ψ . Discerning
the balance between these two considerations should be the
task of future inquiry.

D. Centroid Selection

Although umbrella sampling is highly parallelizable, it is
not possible to sample all πi(x) at once. Thus, we must
decide which πi(x) to prioritize and sample first. Since this
decision must be made prior to actually sampling a πi(x), we
must make use of other information. A possible solution is to
pick a map, ξ, as a centroid if it is surrounded by other low
energy or compliant maps. This however could have negative
consequences, as one of the advantages of umbrella sampling
is that it forces exploration of higher energy areas. Other
naive approaches include allocating centroids in a first-come-
first-serve approach (our current implementation), selecting
centroids with a probability proportional to its energy, or
selecting purely at random.

V. PARALLEL-UMBRELLA SAMPLING

An area of further research is to combine parallel temper-
ing and umbrella sampling into a single algorithm. The un-



derlying structure is extremely similar to umbrella sampling
with its multiple strata. In umbrella sampling, each strata is
given the same β value. In parallel-umbrella sampling, each
stratum πi(x) would have a βi. In addition to proposing
moves to a new ξ ∈ πi(x), moves could also be proposed
to swap bi and bj in the same manner as parallel tempering.
This gives the same benefits as parallel tempering, namely
that it allows for exploration of multiple local minimums
while allowing jumps over large energy barriers, but the
benefit is now also shared in each stratum. This procedure
would have benefits over the ordinary umbrella sampling if
within a stratum there is high variance in energy levels.

VI. CONCLUSION

In this report, we document the theoretical and material
factors which influence the implementation of various meth-
ods used to sample congressional redistricting plans of North
Carolina, in particular, we focus on parallel tempering and
umbrella sampling. Our investigations have a promising fu-
ture as they have developed a variety of analytical techniques
to evaluate the efficiency of various sampling procedures.
Specifically, the development of multi-parameter parallel
tempering over beta values as well as county splitting weights
may allow for better mixing than parallel tempering over beta
values alone may afford. In addition to this accomplishment,
we successfully implemented a basic umbrella sampling pro-
cedure for the first time in this domain. While it effectively
creates, explores, and merges umbrella samples, much future
work is required to improve radius and centroid selection.
Preliminary data presented here also provides insight into
the nature of how the state space is distributed with regard
to our selected distance function ρ which has implications
for the definition of ψ. Much additional exploration into
alternative notions of distance (e.g. ρ = |J(ξi) − J(ξj)| or
ρ = |Jpop(ξi) − Jpop(ξj)|, etc. ) is warranted as the state
space is highly complex and the definition of ρ fundamentally
changes how the space will be sampled. Further work must
also focus on parallelizing the umbrella sampling procedure
so that it can be run at scale.
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Algorithm 3 Iteratively Finding Beta Values
βh = 0.1, βc = 0.1 * spacingFactor
βtuples ∼ {[βc, βh] , [βc, βh] , . . . }

After each β tuple has proposed x number of swaps:
frequencies∼ {frequency1, frequency2, . . . , frequencyn}

if 30% ≤ allfrequencies ≤ 50% then
move on

else
for frequency in frequencies do

if frequency < 30% then
βc-=(βh − βc) · 0.09

end if
if frequency > 50% then

βc+=(βh − βc) · 0.2
end if

end for
end if

if move on then
update all βcto lowest βh
update all βhto βc · spacingFactor

end if

Algorithm 4 Diversity Evaluation
diversityScore, totalDistance
for mapA:maps do

list centroidsA
for mapB:maps excluding mapA do

list centroidsB
for centroid:centroidsA do

d = distance to closest centroid in centroidsB
totalDistance += d

end for
end for
diversityScore += totalDistance

end for
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