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Abstract

This report provides an introduction to common numerical methods used

to simulate and solve stochastic differential equations (SDEs). Relevant

background information is provided regarding stochastic processes, how-

ever it is assumed that the reader possesses some familiarity with random

variables and numerical ordinary differential equations (ODEs). Numerical

techniques for dealing with SDEs such as the Euler-Maruyama and Milstein

methods are discussed and algorithms are provided for their implementa-

tion. Finally, an analysis of these methods’ convergences is carried out by

exploring the concept of error for SDEs through weak and strong conver-

gence.
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1 Introduction

Stochastic differential equations are key mathematical modeling tools which are applied

to problems in fields ranging from epidemiology to finance. Indeed, some of the greatest ad-

vancements in the field of stochastic processes have been made while studying time dependent

variables such as stock prices and the populations of species [Roy & Rau, 2017]. Although

SDEs are useful in a multitude of ways, the magnitude of their applicability matches that

of their complexity, and in order to fully comprehend and derive their solutions analytically,

mastery of stochastic processes and ordinary differential equations is required. Nevertheless,

with a working knowledge of random variables, probability distributions, and familiarity

with basic numerical methods used to solve ODEs1, the background required to success-

fully implement numerical methods for dealing with SDE is far less challenging. This report

provides a few such methods, describes their key differences, and discusses how numerical

methods of their nature are generally improved. In order to accomplish these goals, a brief

overview of stochastic processes will first be provided, presenting necessary concepts and

phenomenon for the successful implementation of numerical SDE solvers.

1.1 Stochastic Processes

Suppose X is a random variable drawn from some probability distribution Θ. Then,

before the value of X is realized (i.e. X has been observed from Θ) X may take any value

from the sample space of the Θ distribution. Now, consider the variable Xt such that

Xt ∼ Θ, and now the value of Xt is indexed by time. Under these conditions, Xt is called

1It is expected the reader will have an understanding of probability theory at the level of an introductory
undergraduate course, and should have some exposure to the Euler method for solving ODEs numerically.
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a continuous-time stochastic process (CTSP), where each realization of Xt depends on what

values are drawn from Θ over for different points t ≥ 0 [Sauer, 2011]. Thus, Xt can be

thought of a function of t whose values map from real time values to the outcome space of

Θ.

One canonical CTSP is the Wiener process (represented atWt below) which will be used

throughout this report and which satisfies these main properties [Roy & Rau, 2017]:

1. Wt ∼ N (0, t), ∀t ≥ 0

2. If [a, b] and [c, d] are disjoint time intervals, Wb −Wa is i.i.d. from Wd −Wc

3. The Wiener process Wt can be represented as a continuous path.

The Wiener process is a well established model for Brownian motion and the two terms are

often used interchangably. If a Wiener process of N time steps from time 0 to time T is

desired, the following algorithm can be implemented numerically [Higham, 2001] − a few

realizations of which are displayed in Figure 1. Note the variation in the paths for different

realizations.

Algorithm 1 N Step Wiener Process Simulation

Input[N],Return[W ]
X ∼ N (0, 1)
T = 1;h = T/N
dW1 = x0

√
h

W1 = dW1

for k = 2 : n do
dWk = xk

√
h

Wk =Wk−1 + dW(k)
end for
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Figure 1: Ten Simulated Wiener Processes (N = 1000)

1.2 Stochastic Differential Equations

While studying ODEs, when the derivative of a function y(t) can be represented as a

function f(t, y(t)), equations such as

dy = f(t, y(t))dt

often arise. For SDEs, if X(t) is the stochastic analogue of y(t), equations of the form

dXt = a(Xt, t)dt+ b(Xt, t)dWt (1.1)

similarly arise where a and b are functions of t and Xt, but instead of representing a derivative

of X(t), a and b quantify the relationship between dt (respectively dWt) and Xt. In fact,

the paths represented by stochastic processes such as the Wiener process are continuous,

but nowhere differentiable2 [Roy & Rau, 2017]. As a result of this, it is more appropriate to

2This is the case for stochastic processes which are said to have a component which takes a random walk,
where the direction towards which X(t) is traveling (i.e. its derivative) “jumps” in direction between any
two time intervals.
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define stochastic differential equations as equations of the form

X(T ) = X0 +

∫ T

0

a(Xt, t)dt+

∫ T

0

b(Xt, t)dWt (1.2)

whose solutions are CTSPs for some starting condition X0. Unlike ODEs (which have a

unique solution given any initial condition), stochastic differential equations have different

solutions for different realized stochastic processes − as previously seen in Figure 1 for the

Wiener process.

In equation (1.2), the significance of
∫ T

0
a(Xt, t)dt is quite clear; however, what integrating

b with respect to dW means is not so obvious. To understand this portion of the SDE, it

helps to recall that an integral can be though of as taking an infinite Riemann sums:

∫ T

0

a(t,X)dt = lim
∆t→0

n∑
i=1

a(ti−1, X(ti−1))∆t (1.3)

Similarly, an equation such as this can be formed with the latter portion of the SDE:

∫ T

0

b(t,X)dWt = lim
∆t→0

n∑
i=1

b(ti−1, X(ti−1)∆Wi (1.4)

where ∆Wi ∼ N (0,∆t). In a way, this integral quantifies the amount of white noise involved

in the SDE, and it may be though of as such for the purposes of this report. Just as the

integral form of SDEs may be approximated by taking a sequence of Riemman sums, equation

(1.1) can be approximated as

∆Xt = a(t,X(t))∆t+ b(t,X(t))∆Wt (1.5)
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which can of course be implemented numerically quite easily. The idea of approximating

the SDE in this fashion quite naturally leads into the Euler-Maruyama method for solving

SDEs, which is discussed in the following section.

2 The Euler-Maruyama Method for Solving SDEs

Arguments used to obtain equations such as (1.5) are the cornerstone of developing

numerical methods for solving SDEs, and the numerical methods discussed here will involve

approximations such as dXt ≈ ∆Xt = Xt−X0 and dW ≈ ∆Wi ∼ N (0,∆t) for some discrete,

determined time change ∆t. In this way, the realized path of X(t) will be approximated

explicitly in order to obtain a numerical solution. As aforementioned in the previous section,

the Euler-Maruyama method is the first of such method where this general technique is used.

The Euler-Maruyama (EM) method is the stochastic analogue of the Euler method

for solving ordinary differential equations. For SDEs such as (1.1) starting at Xt0 = x0, the

Euler-Maruyama method takes the form of:

Xtn+1 = Xtn + a(Xtn , x)∆t+ b(Xtn , tn)∆W (2.1)

where ∆Xt = Xtn+1 − Xtn , ∆t = tn+1 − tn and ∆W = W (tn+1) − W (tn). This method

approximates equations (1.3) and (1.4) for a predetermined time-step. To further illustrate

how EM may be applied to SDEs, consider an equation of the form

dX(t) = µXtdt+ σXtdWt (2.2)
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where µ and σ are real constants and X(t) is a stochastic process. An SDE of this form

is said to follow a geometric brownian path, since its solutions are comprised of a realized

Brownian path along with a drift term [Rosa, 2016]. If a solution is desired for equation

(2.2) on the interval [0,T] with N iterations, the Euler-Maruyama method can easily be used

to find an approximate solution to this equation, as implemented below where h (i.e. ∆t) is

the time-step.

Algorithm 2 Euler-Maruyama Implementation

Input[σ, µ,x0,T,N],Return[Xt]
h = T/N
W = N step Wiener process from Algorithm 1
X = array of length N
X(0) = x0

for k = 0, 1, 2, ...N do
X(k + 1) = X(k) + µX(k)h+ σX(k)(W(k + 1)−W(k))

end for

Equation (2.2) can also be solved analytically quite easily [Oksendal, 1998], and is known

to have the exact solution of

X(t) = x0e
σWt+(µ−σ2/2)t (2.3)

for some initial condition x0. With this knowledge, the Euler-Maruyama’s accuracy can be

visualized by providing the EM method’s approximation to equation (2.3) and equation (2.3)

the same realization of the N step Wiener process and plotting them alongside each other3.

For example, consider solutions to the stochastic differential equation

dX(t) = 0.8Xtdt+ 0.3XtdWt (2.4)

3Recall that although there is an exact solution to equation 2.2, there is not a unique solution, as the
exact solution is dependent on the realization of dW between each change in time.
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starting at x0 = 100 over the time interval t ∈ [0, 1]. Using Algorithm 2, one realization of

the solutions may be obtained, as shown in Figure 2.
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Figure 2: A realized solutions to dX(t) = 0.8Xtdt + 0.3XtdWt from the EM Method (N =
100).

As shown above, the EM method seems to approximate the SDEs quite well. But how

well? To answer this question, the concept of error for numerical SDEs be explored.

3 Error Analysis

For ODEs, the concept of error for a numerical method is quite intuitive: how large the

difference is between the value of the numerical solution to the actual, unique solution of

the ODE. With SDEs, the idea of error is not so simple. For one, there does not exist a
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unique solution of an SDE, only realized solutions. However, the idea of comparing numerical

approximations to an expected path of the exact solution is something conceptually pleasing.

Since stochastic processes are continuous time dependent random variables, there does in

fact exist such a path which the exact solution of an SDEs is expected to take. For example,

if S(t) is the exact solution of an SDE, then E[S(tn)] is the expected value of S(tn) at some

time tn ∈ [0, T ]. Thus, if X(t) is the realized numerical approximation of S(t), the concept of

error at a particular time t can be evaluated as E [|S(t)−X(t)|] , or as |E [S(t)]−E [X(t)] |.

3.1 Strong Convergence

A numerical approximation X(t) is said to converge strongly to a stochastic process S(t)

at time T if

lim
∆t→0

E |S(T )−X(T )| = 0

Similar to the idea of global truncation error for ODEs, the concept of strong convergence

is a statement about the greatest error of E [|S(tn)−X(tn)|] for any tn ∈ [0, T ]. To be more

explicit, if h ≥ max
∀tn∈[0,T ]

|(tn+1 − tn)|, then if

E [|S(tn)−X(tn)|] = O(hp), ∀tn ∈ [0, T ] (3.1)

X(t) is said to have a strong order of convergence of p. This is a statement about the mean

of the error at any point t along the entire path of the solution S(t).

Surprisingly, even the order of convergence for the Euler method for ODEs is 1, the

order of strong convergence for the EM method is only 1/2 [Higham, 2001]. To show this, if
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ε(t) = |S(t)−X(t)|, then ε(t) = O(h1/2), which implies ε(t) ≈ Ch1/2 for some finite constant

C. Using the fact that log(ε(t)) ≈ log(C) +
1

2
log(h), a linear trend should exist between

the log(ε(t)) and log(h). By averaging 1000 numerically generated realizations of ε(T ) for

equation (2.4), and then repeating this procedure for increasing values of ∆t, Figure 3 is

obtained.
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Figure 3: Strong Convergence of EM for equation (2.4) for 1000 samples

It is clear from Figure 3 that the predicted linear trend with slope 1/2 is present for the

strong error of the Euler-Maruyama method4. The significance of this is that as h→ 0, the

expected error at any time along the interval [0, T ] will go to zero5. Sometimes a less stringent

evaluation of error is desired − or at least sufficient − for a particular problem at hand, which

is the error between the expected values of S(t) and X(t). This idea of convergence is more

4The slope of 1/2 in Figure 3 is given for comparison and the slope of 1 is provided for contrast.
5It is for this reason that the error is referred to as strong, since it states that each of the realized numerical

approximations will converge to the true solution as h→ 0.
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relaxed but less relatable, and is appropriately denoted as weak convergence.

3.2 Weak Convergence

If strong convergence is thought of as the mean of the errors at any particular time,

weak convergence can be thought of as the error of the means at any particular time along

our solution’s interval [0, T ]. To be precise, if h ≥ max
∀tn∈[0,T ]

|(tn+1 − tn)|, and if Ψ(·) satisfies

smoothness and polynomial growth conditions, then if

|E [Ψ(S(t))]− E [Ψ(X(t))] | = O(hq), ∀tn ∈ [0, T ] (3.2)

Xt is said to have a weak order of convergence of q [Sauer, 2011]. This type of convergence

is referred to as “weak” since it is a statement about the error of the expected values S(t)

and X(t) and does not constrain the maximum error between any particular realizations of

S(t) and X(t). To check the order of convergences for the stochastic processes in this report,

it suffices to do so for Ψ(X(t)) = X(t) [Higham, 2001]. Just as E [ε(T )] was approximated

with 1000 realizations of ε(T ), E [S(t)] and E [X(t)] may be calculated similarly. By doing

so, the weak order of convergence for equation (2.4) for EM can be visualized, as Figure 4

displays.
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Figure 4: Weak Convergence of EM for equation (2.4) for 400, 000 samples

As the reader may have expected, the weak order of convergence for EM is greater than

that of its strong convergence: it is 1. This is generally the case for numerical methods used to

solve SDEs, but not always. Having presented the Euler-Maruyama method and discussed

its convergences, a natural question to ask is “how can the numerical approximation be

improved?” To proceed in answering this question, additional concepts related to stochastic

processes must first be introduced, starting with one of the most significant theories in all

of stochastic calculus: Ito’s Lemma.

Higher Order Numerical Methods

Many numerical methods used to improve the Euler method for solving ODEs rely on

Taylor expanding the equation of interest around a discrete point in order to account for
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truncation errors. Similarly, numerical methods used for solving SDEs involve such a prac-

tice, though the necessity behind doing so is somewhat different, as discussed in this section.

Ito’s Lemma

For some function f(t,X(t)) ∈ C ′′, where t = time and X(t) is a CTSP, df(t,X(t) can

be approximated through a Taylor expansion as

df =
∂f

∂t
dt+

∂f

∂X
dX+

1

2

(
∂2f

∂X2
dX2 + 2

∂2f

∂X∂t
dXdt+

∂2f

∂t2
dt2
)

+ ...

If X(t) satisfies dX = µdt+ σdWt, then this substitution can be made for dX, resulting in

df =
∂f

∂t
dt+

∂f

∂X
(µdt+ σdWt)+

1

2

(
∂2f

∂X2
(µdt+ σdWt)

2 + 2
∂2f

∂X∂t
(µdt+ σdWt)dt+

∂2f

∂t2
dt2
)

+ ...

It turns out that for a Wiener processW , the variance ofW grows quadratically with respect

to time (i.e. dW2 ≈ dt) [Roy & Rau, 2017]. Thus, dW2 approaches zero slower than dt2 and

dtdW as h→ 0. As a result, a better approximation of df which accounts for dW2 ≈ dt is

df =
∂f

∂t
dt+

∂f

∂X
(µdt+ σdWt) +

1

2

∂2f

∂X2
σ2dt. (3.3)

This form of df(t,Xt) for stochastic functions is known as Ito’s Lemma, and is fundamental

for the study of stochastic calculus and SDEs. By using Ito’s Lemma, corrections can be
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made for the approximation of dX used for the Euler-Maruyama method; such methods

involve including higher order terms to equation (1.5). One such method which will be

discussed in this report is the Milstein method.

3.3 The Milstein Method

For equations of the form (2.2), using Ito’s Lemma, it can be shown that :

d(ln(Xt)) =

(
µ− 1

2
σ2

)
dt+ σdWt,

which can be put in the form of

Xt+dt = Xtexp

{∫ t+dt
t

(
µ− 1

2
σ2

)
dt+

∫ t+dt
t

σdW
}

and, for small ∆t, be approximated as

Xt+dt ≈ Xt

(
1 + µ∆t− 1

2
σ2∆t+ σ∆Wt +

1

2
σ2(∆Wt)

2

)

≈ Xt + µXt∆t+ σXt∆Wt +
1

2
σ2Xt

(
∆W2 −∆t

)
. (3.4)

Equation (3.4) is the Milstein method’s approximation for equation (2.2). More generally,

for any SDE with the form of equation (1.1), the Milstein Method takes the form of

dXt = a(Xt, t)dt+ b(Xt, t)dWt +
1

2
b(Xt, t)

∂b

∂X
(Xt, t)

(
dW2 − dt

)
.

Notice that the Milstein method is an extention of the Euler-Maruyama method which makes

a correction for the quadratic variation of dW . Continuing with equation (2.2) for geometric

Brownian motion and using the fact that
∂b

∂X
= σ, the Milstein method can be implemented

as shown in Algorithm 3.
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Algorithm 3 Milstein Implementation

Input[σ, µ,x0,T,N],Return[Xt]
h = T/N
W = N step Wiener process from Algorithm 1
dWk = (W(k + 1)−W(k))
X = array of length N
X(0) = x0

for k = 0, 1, 2, ...N do

dW =W(k + 1)−W(k)

X(k + 1) = X(k) + µX(k)h+ σX(k)(dW)

X(k + 1) = X(k + 1) +X(k)
1

2
σ2 ((dW)2 − h)

end for

To directly visualize the effects of this correction, numerical solutions obtained from

the Milstein method as well as the Euler-Maruyama method can be plotted alongside one

another, as shown in Figure 5. Note how for equations which have σ values close to µ, the

Milstein approximation follows the exact solution much more closely. To understand just

how much the accuracy is expected to increase by, the methods used to show the strong and

weak convergences of the Euler-Maruyama method can be repeated for the Milstein method,

as shown in Figures 6 & 7, respectively.
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Figure 5: A realized solutions to dX(t) = 0.8Xtdt + 0.8XtdWt from the Milstein Method
(N = 100, X0 = 4).
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Figure 6: Strong Convergence of the Milstein Method on dX(t) = 0.8Xtdt+0.3XtdWt (1000
Samples, X0 = 100).
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Figure 7: Weak Convergence of the Milstein Method on dX(t) = 0.8Xtdt + 0.3XtdWt

(1, 000, 000 Samples, X0 = 1).

As shown in Figure 6, the Milstein method has a strong convergence of 1 − as opposed to

1/2 by the EM method − however the weak order of convergence remains 1. It is possible to

increase both the strong and weak order of convergence by expanding out the Taylor series

of equations of the form (2.2) even further and applying Ito’s Lemma. This is the basis of

other higher order methods for solving SDEs numerically such as the Runge-Kutta method

[Rosa, 2016].

4 Summary

Numerical methods used to solve stochastic differential equations follow many of the same

techniques as those used to solve ordinary differential equations numerically, such as the Euler

method. Many of these methods require dealing with differential equation which contain a
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Wiener process component that adds randomness to the solutions of such equations. This

addition of randomness results in solutions which are not unique, and forces the evaluation of

error for numerical methods to rely on concepts from the expectation of random variables −

such as strong and weak convergences. Such errors for numerical methods can be reduced by

resorting to stochastic calculus (mainly Ito’s Lemma) and Taylor expanding out formulas of

interest to obtain more accuracy. This report has intended to provide a brief introduction to

formulas and algorithms use to numerically solve stochastic differential equations following a

geometric Brownian motion and may be used as a primer for the study of numerical SDEs.
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